2018年11月7日水曜日

予測推測AI


先日の「サイエンスZERO」で、錯視の解明にAIを使う、という話があった。

ディープラーニングの学習において、画像の入力と出力が同じになるように学習をさせると、特定の層において錯視が再現できた、というものだ。つまり、錯視画像を見せると錯視が起きる層が形成されていた。また、動画において、少し先の画像を合わせるような学習をさせると、動いて見える錯視が再現できた。

これは興味を引かれた。番組では言及されていなかったのが、この実験で何層使っていたのか、だ。その層数をどうするかで、錯視ができたりできなかったりする可能性が出てきた。また、複数の層から分岐を出して、錯視を取り出すようなこともできるのではないか。一つの画像からさまざまな情報を一気に引き出すDNN、というのは考えられないだろうか。つまり、錯視以外にも色々な情報を持つ層が作れるのではないだろうか。

例えば特定の特徴を持つものの抽出だ。出来上がった後の画像を解析するのではなく、DNNの特定の層をチェックしていればリアルタイムで抽出できる、といったようなものだ。それは画像とは限らず動きかもしれないし、動きや変化の予想かも知れないし、視線が違っても追いかけられるかもしれない。画像解析でもできるだろうが、それよりずっと単純で簡単な可能性がある。

例えばスリの動き予想や逃走犯の逃走経路予想のような予想、マイクロジェスチャーのような感情解析、画像の解像度以下のものの動き、超解像、映っていないものの推測(大衆の動きから)、といった推測は、面白い結果が色々と出てくる可能性がある。

こういったものが複数いっぺんに取り出せるとなると、将来の監視カメラがどう発展するかは興味深い。

0 件のコメント:

コメントを投稿

注目の投稿:

砂の船

  免震構造については過去いくつか提案しているが、これの新しい版である。 以前、難燃性の油の上に浮かべた船の構造を提案したことがある。あれの砂版である。つまり、砂のプールを作っておいて、その上に浮かべるというものだ。砂が抵抗となって振動を軽減する。 ただし、油や水と違って砂の...

人気の投稿: